A proximal point algorithm for DC fuctions on Hadamard manifolds

نویسندگان

  • Joao Carlos de Oliveira Souza
  • P. Roberto Oliveira
چکیده

An extension of a proximal point algorithm for difference of two convex functions is presented in the context of Riemannian manifolds of nonposite sectional curvature. If the sequence generated by our algorithm is bounded it is proved that every cluster point is a critical point of the function (not necessarily convex) under consideration, even if minimizations are performed inexactly at each iteration. Application in maximization problems with constraints, within the framework of Hadamard manifolds is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Convergence of Inexact Proximal Point Algorithm on Hadamard Manifolds

In this paper we consider the proximal point algorithm to approximate a singularity of a multivalued monotone vector field on a Hadamard manifold. We study the convergence of the sequence generated by an inexact form of the algorithm. Our results extend the results of [3, 25] to Hadamard manifolds as well as the main result of [11] with more general assumptions on the control sequence. We also ...

متن کامل

W-convergence of the proximal point algorithm in complete CAT(0) metric spaces

‎In this paper‎, ‎we generalize the proximal point algorithm to complete CAT(0) spaces and show‎ ‎that the sequence generated by the proximal point algorithm‎ $w$-converges to a zero of the maximal‎ ‎monotone operator‎. ‎Also‎, ‎we prove that if $f‎: ‎Xrightarrow‎ ‎]-infty‎, +‎infty]$ is a proper‎, ‎convex and lower semicontinuous‎ ‎function on the complete CAT(0) space $X$‎, ‎then the proximal...

متن کامل

Inexact scalarization proximal methods for multiobjective quasiconvex minimization on Hadamard manifolds

In this paper we extend naturally the scalarization proximal point method to solve multiobjective unconstrained minimization problems, proposed by Apolinario et al.[1], from Euclidean spaces to Hadamard manifolds for locally Lipschitz and quasiconvex vector objective functions. Moreover, we present a convergence analysis, under some mild assumptions on the multiobjective function, for two inexa...

متن کامل

Proximal Point Algorithm for Quasi-convex Minimization Problems in Metric Spaces

In this paper, the proximal point algorithm for quasi-convex minimization problem in nonpositive curvature metric spaces is studied. We prove ∆-convergence of the generated sequence to a critical point (which is defined in the text) of an objective convex, proper and lower semicontinuous function with at least a minimum point as well as some strong convergence results to a minimum point with so...

متن کامل

Proximal Point Methods for Quasiconvex and Convex Functions With Bregman Distances on Hadamard Manifolds

This paper generalizes the proximal point method using Bregman distances to solve convex and quasiconvex optimization problems on noncompact Hadamard manifolds. We will proved that the sequence generated by our method is well defined and converges to an optimal solution of the problem. Also, we obtain the same convergence properties for the classical proximal method, applied to a class of quasi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Global Optimization

دوره 63  شماره 

صفحات  -

تاریخ انتشار 2015